Third Semester B.E. Degree Examination, Dec.2019/Jan.2020 **Transform Calculus, Fourier Series and Numerical Techniques**

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Find the Laplace transform of:

(i)
$$\left(\frac{4t+5}{e^{2t}}\right)^2$$
 (ii) $\left(\frac{\sin 2t}{\sqrt{t}}\right)^2$ (iii) tcosat. (10 Marks)

The square wave function f(t) with period 2a defined by $f(t) = \begin{cases} 1 & 0 \le t < a \\ -1 & a \le t < 2a \end{cases}$ Show that

$$\left(\frac{1}{s}\right) \tanh\left(\frac{as}{2}\right)$$
. (05 Marks)

c. Employ Laplace transform to solve
$$\frac{d^2y}{dt^2} - \frac{dy}{dt} = 0$$
, $y(0) = y_1(0) = 3$. (05 Marks)

2 a. Find (i)
$$L^{-1} \left\{ \frac{s^2 - 3s + 4}{s^3} \right\}$$
 (ii) $\cot^{-1} \left(\frac{s}{2} \right)$ (iii) $L^{-1} \left\{ \frac{s}{(s+2)(s+3)} \right\}$ (10 Marks)

b. Find the inverse Laplace transform of,
$$\frac{1}{s(s^2+1)}$$
 using convolution theorem. (05 Marks)

c. Express
$$f(t) = \begin{cases} 2 & \text{if } 0 < t < 1 \\ \frac{t^2}{2} & \text{if } 1 < t < \frac{\pi}{2} \\ \cos t & t > \frac{\pi}{2} \end{cases}$$
 in terms of unit step function and hence find its Laplace transformation. (05 Marks)

transformation.

(05 Marks)

3 a. Obtain the Fourier series of
$$f(x) = \begin{cases} \frac{\text{Module-2}}{2} & -2 < x < 0 \\ x & 0 < x < 2 \end{cases}$$
 (08 Marks)

b. Find the half range cosine series of,
$$f(x) = (x+1)$$
 in the interval $0 \le x \le 1$. (06 Marks)

c. Express
$$f(x) = x^2$$
 as a Fourier series of period 2π in the interval $0 < x < 2\pi$. (06 Marks)

OR

4 a. Compute the first two harmonics of the Fourier Series of f(x) given the following table:

x°	0	60°	120°	180°	240°	300°
У	7.9	7.2	3.6	0.5	0.9	6.8

(08 Marks)

b. Find the half range size series of e^x in the interval $0 \le x \le 1$.

(06 Marks)

c. Obtain the Fourier series of
$$f(x) = \frac{\pi^2}{12} - \frac{x^2}{4}$$
 valid in the interval $(-\pi - \pi)$

(06 Marks)

Module-3

5 a. Find the Infinite Fourier transform of
$$e^{-|x|}$$
.

(07 Marks)

b. Find the Fourier cosine transform of
$$f(x) = e^{-2x} + 4e^{-3x}$$
.

(06 Marks)

c. Solve
$$u_{n+2} - 3u_{n+1} + 2u_n = 3^n$$
, given $u_0 = u_1 = 0$.

(07 Marks)

OR

6 a. If
$$f(x) = \begin{cases} 1 & \text{for } |x| \le a \\ 0 & \text{for } |x| > a \end{cases}$$
, find the infinite transform of $f(x)$ and hence evaluate $\int_0^\infty \frac{\sin x}{x} dx$.

(07 Marks

b. Obtain the Z-transform of $\cosh n\theta$ and $\sinh n\theta$.

(06 Marks)

c. Find the inverse Z-transform of
$$\frac{4z^2 - 2z}{z^3 - 5z^2 + 8z - 4}$$

(07 Marks)

Module-4

7 a. Solve $\frac{dy}{dx} = e^x - y$, y(0) = 2 using Taylor's Series method upto 4th degree terms and find the value of y(1.1). (07 Marks)

c. Apply Milne's predictor-corrector formulae to compute y(0.4) given $\frac{dy}{dx} = 2e^{x}y$, with

(07 Marks)

X	0	0.1	0.2	0.3
у	2.4	2.473	3.129	4.059

OR

8 a. Given $\frac{dy}{dx} = x + \sin y$; y(0) = 1. Compute y(0.4) with h = 0.2 using Euler's modified method. (07 Marks)

b. Apply Runge-Kutta fourth order method, to find y(0.1) with h = 0.1 given $\frac{dy}{dx} + y + xy^2 = 0$; y(0) = 1.

c. Using Adams-Bashforth method, find y(4.4) given $5x\left(\frac{dy}{dx}\right) + y^2 = 2$ with

X	4	4.1	4.2	4.3
y	0 1 /19	1.0049	1.0097	1.0143

(07 Marks)

Module-5

- 9 a. Solve by Runge Kutta method $\frac{d^2y}{dx^2} = x \left(\frac{dy}{dx}\right)^2 y^2$ for x = 0.2 correct 4 decimal places, using initial conditions y(0) = 1, y'(0) = 0, h = 0.2. (07 Marks)
 - b. Derive Euler's equation in the standard form, $\frac{\partial f}{\partial y} \frac{d}{dx} \left[\frac{\partial f}{\partial y'} \right] = 0.$ (06 Marks)
 - c. Find the extramal of the functional, $\int_{x_1}^{x_2} y^2 + (y')^2 + 2ye^x dx$. (07 Marks)

OR

10 a. Apply Milne's predictor corrector method to compute $\frac{d^2y}{dx^2} = 1 + \frac{dy}{dx}$ and the following table of initial values:

X	0	0.1	0.2	0.3
У	1	1.1103	1.2427	1.3990
y'	1	1.2103	1.4427	1.6990

(07 Marks)

b. Find the extramal for the functional, $\int_{0}^{\frac{\pi}{2}} \left[y^2 - y'^2 - 2y \sin x \right] dx ; y(0) = 0; y\left(\frac{\pi}{2}\right) = 1.$

(06 Marks)

c. Prove that geodesics of a plane surface are straight lines.

(07 Marks)